Part Number Hot Search : 
101TC 4E48B M3764 10V10X1 DZ950N AN3125 M54679E A1774
Product Description
Full Text Search
 

To Download HSDL-4200 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 High-Performance T-13/4 (5 mm) TS AlGaAs Infrared (875 nm) Lamp Technical Data
HSDL-4200 Series HSDL-4220 30 HSDL-4230 17
Features
* Very High Power TS AlGaAs Technology * 875 nm Wavelength * T-13/4 Package * Low Cost * Very High Intensity: HSDL-4220 - 38 mW/sr HSDL-4230 - 75 mW/sr * Choice of Viewing Angle: HSDL-4220 - 30 HSDL-4230 - 17 * Low Forward Voltage for Series Operation * High Speed: 40 ns Rise Times
* Copper Leadframe for Improved Thermal and Optical Characteristics
Applications
* IR Audio * IR Telephones * High Speed IR Communications IR LANs IR Modems IR Dongles * Industrial IR Equipment * IR Portable Instruments
* Interfaces with Crystal Semiconductor CS8130 Infrared Transceiver
Description
The HSDL-4200 series of emitters are the first in a sequence of emitters that are aimed at high power, low forward voltage, and high speed. These emitters utilize the Transparent Substrate, double heterojunction, Aluminum Gallium Arsenide (TS AlGaAs) LED technology. These devices are optimized for speed and efficiency at emission wavelengths of 875 nm. This material produces high radiant efficiency over a wide range of currents up to 500 mA peak current. The HSDL-4200 series of emitters are available in a choice of viewing angles, the HSDL-4230 at 17 and the HSDL-4220 at 30. Both lamps are packaged in clear T-13/4 (5 mm) packages.
Package Dimensions
5.00 0.20 (0.197 0.008) 1.14 0.20 (0.045 0.008) 2.35 MAX. (0.093)
8.70 0.20 (0.343 0.008)
0.70 MAX. (0.028) 31.4 MIN. (1.23) CATHODE
0.50 0.10 SQUARE (0.020 0.004) 1.27 NOM. (0.050)
5.80 0.20 (0.228 0.008)
CATHODE
2.54 NOM. (0.100)
2
The package design of these emitters is optimized for efficient power dissipation. Copper leadframes are used to obtain better thermal performance than the traditional steel leadframes.
The wide angle emitter, HSDL4220, is compatible with the IrDA SIR standard and can be used with the HSDL-1000 integrated SIR transceiver.
Absolute Maximum Ratings
Parameter Peak Forward Current Symbol IFPK Min. Max. 500 Unit mA Reference [2], Fig. 2b Duty Factor = 20% Pulse Width = 100 s [2] [1], Fig. 2a
Average Forward Current DC Forward Current Power Dissipation Reverse Voltage (IR = 100 A) Transient Forward Current (10 s Pulse) Operating Temperature Storage Temperature LED Junction Temperature Lead Soldering Temperature [1.6 mm (0.063 in.) from body]
IFAVG IFDC PDISS VR IFTR TO TS TJ
100 100 260 5 0 -20 1.0 70 85 110 260 for 5 seconds
mA mA mW V A C C C C
[3]
Notes: 1. Derate linearly as shown in Figure 4. 2. Any pulsed operation cannot exceed the Absolute Max Peak Forward Current as specified in Figure 5. 3. The transient peak current is the maximum non-recurring peak current the device can withstand without damaging the LED die and the wire bonds.
Electrical Characteristics at 25C
Parameter Forward Voltage Forward Voltage Temperature Coefficient Series Resistance Diode Capacitance Reverse Voltage Thermal Resistance, Junction to Pin Symbol VF V/T RS CO VR Rjp Min. 1.30 Typ. 1.50 2.15 -2.1 -2.1 2.8 40 20 110 Max. 1.70 Unit V mV/C ohms pF V C/W Condition IFDC = 50 mA IFPK = 250 mA IFDC = 50 mA IFDC = 100 mA IFDC = 100 mA 0 V, 1 MHz IR = 100 A Reference Fig. 2a Fig. 2b Fig. 2c
2
3
Optical Characteristics at 25C
Parameter Radiant Optical Power HSDL-4220 HSDL-4230 Radiant On-Axis Intensity HSDL-4220 Symbol PO PO Min. Typ. 19 38 16 32 22 38 76 190 75 150 375 -0.35 -0.35 30 17 875 0.25 37 40 9 60 Max. Unit mW mW Condition IFDC = 50 mA IFDC = 100 mA IFDC = 50 mA IFDC = 100 mA IFDC = 50 mA IFDC = 100 mA IFPK = 250 mA IFDC = 50 mA IFDC = 100 mA IFPK = 250 mA IFDC = 50 mA IFDC = 100 mA IFDC = 50 mA IFDC = 50 mA IFDC = 50 mA IFDC = 50 mA IFDC = 50 mA IFDC = 50 mA IF = 50 mA 10 mA Fig. 3a Fig. 3b Fig. 3a Fig. 3b Reference
IE
mW/sr
HSDL-4230
IE IE /T
39
131
mW/sr
Radiant On-Axis Intensity Temperature Coefficient Viewing Angle HSDL-4220 HSDL-4230 Peak Wavelength Peak Wavelength Temperature Coefficient Spectral Width-at FWHM Optical Rise and Fall Times, 10%-90% Bandwidth
%/C
21/2 21/2 PK /T tr/tf fc
860
895
deg deg nm nm/C nm ns MHz
Fig. 6 Fig. 7 Fig. 1
Fig. 1
Fig. 8
Ordering Information
Part Number HSDL-4220 HSDL-4230 Lead Form Straight Straight Shipping Option Bulk Bulk
4
RELATIVE RADIANT INTENSITY
TA = 25 C IFDC = 50 mA 1.0
IFDC - DC FORWARD CURRENT - mA
1.5
1,000 TA = 25 C
IFPK - PEAK FORWARD CURRENT - mA
1,000
100
100
TA = 25 C
0.5
10
10
0 800
850
900
950
1
0
0.5
1.0
1.5
2.0
1 0
0.5
1.0
1.5
2.0
2.5
3.0
- WAVELENGTH - nm
VF - FORWARD VOLTAGE - V
VF - FORWARD VOLTAGE - V
Figure 1. Relative Radiant Intensity vs. Wavelength.
Figure 2a. DC Forward Current vs. Forward Voltage.
Figure 2b. Peak Forward Current vs. Forward Voltage.
2.0
RELATIVE RADIANT INTENSITY (NORMALIZED AT 50 mA)
VF - FORWARD VOLTAGE - V
2.0
2.0
NORMALIZED RADIANT INTENSITY
TA = 25 C
1.8
TA = 25 C IFDC = 100 mA IFDC = 50 mA
NORMALIZED TO IFPK = 250 mA 1.5 VALID FOR PULSE WIDTH = 1.6 s TO 100 s 1.0
1.6
1.6
1.2
1.4
0.8
1.2 1.0 -20
IFDC = 1 mA 0 20 40 60 80
0.4 0
0.5
0
20
40
60
80
100
0
0
100
200
300
400
500
TA - AMBIENT TEMPERATURE - C
IFDC - DC FORWARD CURRENT - mA
IFPK - PEAK FORWARD CURRENT - mA
Figure 2c. Forward Voltage vs Ambient Temperature.
Figure 3a. Relative Radiant Intensity vs. DC Forward Current.
Figure 3b. Normalized Radiant Intensity vs. Peak Forward Current.
IFDC - MAX. DC FORWARD CURRENT - mA
IFPK - PEAK FORWARD CURRENT - mA
100 80 60 40 20 0
RJA = 300 C/W
1,000
RJA = 400 C/W RJA = 500 C/W
TA = 25 C PULSE WIDTH < 100 s 100 0.01 0.1 DUTY FACTOR 1
0
10
20
30
40
50 60
70
80
TA - AMBIENT TEMPERATURE - C
Figure 4. Maximum DC Forward Current vs. Ambient Temperature. Derated Based on TJMAX = 110C.
Figure 5. Maximum Peak Forward Current vs. Duty Factor.
5
1.0
RELATIVE RADIANT INTENSITY
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
TA = 25 C
0 10090 80 70 60 50 40 30 20 10 0 10 20 30 40 50 60 70 80 90100 - ANGLE FROM OPTICAL CENTERLINE - DEGREES (CONE HALF ANGLE)
Figure 6. Relative Radiant Intensity vs. Angular Displacement HSDL-4220.
1.0
RELATIVE RADIANT INTENSITY
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
TA = 25 C
0 10090 80 70 60 50 40 30 20 10 0 10 20 30 40 50 60 70 80 90100 - ANGLE FROM OPTICAL CENTERLINE - DEGREES (CONE HALF ANGLE)
Figure 7. Relative Radiant Intensity vs. Angular Displacement HSDL-4230.
RELATIVE RADIANT INTENSITY - dB
2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 1E+5
TA = 25 C
9 MHz
1E+6
1E+7
1E+8
f - FREQUENCY - Hz
Figure 8. Relative Radiant Intensity vs. Frequency.
www.semiconductor.agilent.com Data subject to change. Copyright (c) 1999 Agilent Technologies Inc. Obsoletes 5968-0956E (8/98) 5968-5912E (11/99)


▲Up To Search▲   

 
Price & Availability of HSDL-4200

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X